If a bar magnet of magnetic moment M is freely suspended in a uniform magnetic field of strength B, the work done in rotating the magnet through an angle is
1.
2.
3.
4.
A magnet of magnetic moment M is situated with its axis along the direction of a magnetic field of strength B. The work done in rotating it by an angle of 180o will be
1. -MB
2. +MB
3. 0
4. +2MB
A magnetic needle is kept in a non-uniform magnetic field. It experiences:
1. A force and a torque
2. A force but not a torque
3. A torque but not a force
4. Neither a torque nor a force
A long magnetic needle of length \(2L\), magnetic moment \(M\) and pole strength \(m\) units is broken into two pieces at the middle. The magnetic moment and pole strength of each piece will be:
1. \(\frac{M}{2} , \frac{m}{2}\)
2. \(M , \frac{m}{2}\)
3. \(\frac{M}{2} , m\)
4. \(M, m\)
Two identical thin bar magnets each of length l and pole strength m are placed at the right angle to each other with the north pole of one touching south pole of the other. The magnetic moment of the system is :
1. ml
2. 2ml
3.
4.
A bar magnet of magnetic moment 104J/T is free to rotate in a horizontal plane. The work done in rotating the magnet slowly from a direction parallel to a horizontal magnetic field of 4×10–5 T to a direction 60° from the field will be
1. 0.2 J 2. 2.0 J
3. 4.18 J 4. 2 × 102 J
Two equal bar magnets are kept as shown in the figure. The direction of the resultant magnetic field, indicated by arrowhead at the point \(P\) is: (approximately)
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
1. | equal pole strength |
2. | magnetic moment \(\frac{M}{4}\) |
3. | magnetic moment \(\frac{M}{2}\) |
4. | magnetic moment \(M\) |
A magnet of magnetic moment is placed along the x-axis in a magnetic field . The torque acting on the magnet is
1. 175 N-m
2. 150
3. 75 N-m
4. 25 N-m
A bar magnet of length 3 cm has points A and B along its axis at distances of 24 cm and 48 cm on the opposite sides. Ratio of magnetic fields at these points will be
1. 8 2.
3. 3 4. 4